Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299791

RESUMO

Motor imagery (MI) is a technique of imagining the performance of a motor task without actually using the muscles. When employed in a brain-computer interface (BCI) supported by electroencephalographic (EEG) sensors, it can be used as a successful method of human-computer interaction. In this paper, the performance of six different classifiers, namely linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and three classifiers from the family of convolutional neural networks (CNN), is evaluated using EEG MI datasets. The study investigates the effectiveness of these classifiers on MI, guided by a static visual cue, dynamic visual guidance, and a combination of dynamic visual and vibrotactile (somatosensory) guidance. The effect of filtering passband during data preprocessing was also investigated. The results show that the ResNet-based CNN significantly outperforms the competing classifiers on both vibrotactile and visually guided data when detecting different directions of MI. Preprocessing the data using low-frequency signal features proves to be a better solution to achieve higher classification accuracy. It has also been shown that vibrotactile guidance has a significant impact on classification accuracy, with the associated improvement particularly evident for architecturally simpler classifiers. These findings have important implications for the development of EEG-based BCIs, as they provide valuable insight into the suitability of different classifiers for different contexts of use.


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia , Humanos , Redes Neurais de Computação , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Algoritmos
2.
Biomed Eng Online ; 22(1): 41, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143020

RESUMO

BACKGROUND: Motor imagery is a cognitive process of imagining a performance of a motor task without employing the actual movement of muscles. It is often used in rehabilitation and utilized in assistive technologies to control a brain-computer interface (BCI). This paper provides a comparison of different time-frequency representations (TFR) and their Rényi and Shannon entropies for sensorimotor rhythm (SMR) based motor imagery control signals in electroencephalographic (EEG) data. The motor imagery task was guided by visual guidance, visual and vibrotactile (somatosensory) guidance or visual cue only. RESULTS: When using TFR-based entropy features as an input for classification of different interaction intentions, higher accuracies were achieved (up to 99.87%) in comparison to regular time-series amplitude features (for which accuracy was up to 85.91%), which is an increase when compared to existing methods. In particular, the highest accuracy was achieved for the classification of the motor imagery versus the baseline (rest state) when using Shannon entropy with Reassigned Pseudo Wigner-Ville time-frequency representation. CONCLUSIONS: Our findings suggest that the quantity of useful classifiable motor imagery information (entropy output) changes during the period of motor imagery in comparison to baseline period; as a result, there is an increase in the accuracy and F1 score of classification when using entropy features in comparison to the accuracy and the F1 of classification when using amplitude features, hence, it is manifested as an improvement of the ability to detect motor imagery.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Imaginação/fisiologia , Eletroencefalografia/métodos , Movimento , Entropia
3.
Front Hum Neurosci ; 16: 841312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360289

RESUMO

Establishing the basic knowledge, methodology, and technology for a framework for the continuous decoding of hand/arm movement intention was the aim of the ERC-funded project "Feel Your Reach". In this work, we review the studies and methods we performed and implemented in the last 6 years, which build the basis for enabling severely paralyzed people to non-invasively control a robotic arm in real-time from electroencephalogram (EEG). In detail, we investigated goal-directed movement detection, decoding of executed and attempted movement trajectories, grasping correlates, error processing, and kinesthetic feedback. Although we have tested some of our approaches already with the target populations, we still need to transfer the "Feel Your Reach" framework to people with cervical spinal cord injury and evaluate the decoders' performance while participants attempt to perform upper-limb movements. While on the one hand, we made major progress towards this ambitious goal, we also critically discuss current limitations.

4.
Front Hum Neurosci ; 15: 687252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630055

RESUMO

Motor imagery is a popular technique employed as a motor rehabilitation tool, or to control assistive devices to substitute lost motor function. In both said areas of application, artificial somatosensory input helps to mirror the sensorimotor loop by providing kinesthetic feedback or guidance in a more intuitive fashion than via visual input. In this work, we study directional and movement-related information in electroencephalographic signals acquired during a visually guided center-out motor imagery task in two conditions, i.e., with and without additional somatosensory input in the form of vibrotactile guidance. Imagined movements to the right and forward could be discriminated in low-frequency electroencephalographic amplitudes with group level peak accuracies of 70% with vibrotactile guidance, and 67% without vibrotactile guidance. The peak accuracies with and without vibrotactile guidance were not significantly different. Furthermore, the motor imagery could be classified against a resting baseline with group level accuracies between 76 and 83%, using either low-frequency amplitude features or µ and ß power spectral features. On average, accuracies were higher with vibrotactile guidance, while this difference was only significant in the latter set of features. Our findings suggest that directional information in low-frequency electroencephalographic amplitudes is retained in the presence of vibrotactile guidance. Moreover, they hint at an enhancing effect on motor-related µ and ß spectral features when vibrotactile guidance is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...